Darwin  1.10(beta)
Class List
Here are the classes, structs, unions and interfaces with brief descriptions:
[detail level 12]
 NdrwnNNGraphThreadedMovesTemplated drwnNNGraph search moves (multi-threaded)
 NdrwnXMLUtils
 CDarwinApp
 CdrwnADLPInferenceImplements the alternating direction method algorithm described in "An Alternating Direction Method for Dual MAP LP Relaxation," Ofer Meshi and Amir Globerson, ECML, 2011
 CdrwnADLPInferenceConfig
 CdrwnAlphaBetaSwapInferenceImplements alpha-beta swap inference using graph-cuts (see Boykov et al, 2001). Factor graphs must be pairwise
 CdrwnAlphaExpansionInferenceImplements alpha-expansion inference using graph-cuts (see Boykov et al, 2001). Factor graphs must be pairwise
 CdrwnAsyncMaxProdInferenceImplements asynchronous max-product (min-sum) inference
 CdrwnAsyncSumProdInferenceImplements asynchronous sum-product inference
 CdrwnBiasFeatureMapAugments input feature vector with 1 (i.e., to allow for a bias weight)
 CdrwnBiasJointFeatureMapSame as drwnIdentityJointFeatureMap but adds a bias term for each class i.e., $\phi(x, y) = \left(\delta\!\left\{y = 0\right\} (x^T, 1), \ldots, \delta\!\left\{y = K - 2\right\} (x^T, 1)\right) \in \mathbb{R}^{(K - 1)(n + 1)}$
 CdrwnBitArrayImplements an efficient packed array of bits
 CdrwnBKMaxFlowImplementation of Boykov and Kolmogorov's maxflow algorithm
 CdrwnBooleanProperty
 CdrwnBoostedClassifierImplements a mult-class boosted decision-tree classifier. See Zhu et al., Multi-class AdaBoost, 2006
 CdrwnBoostedClassifierConfig
 CdrwnClassificationResultsEncapsulates summary of classifier output from which various curves can be generated (e.g., precision-recall curves)
 CdrwnClassifierImplements the interface for a generic machine learning classifier
 CdrwnCloneableInterface for cloning object (i.e., virtual copy constructor)
 CdrwnCodeProfilerStatic class for providing profile information on functions
 CdrwnCodeProfilerConfig
 CdrwnColourHistogramSpecialized histogram for quantized 3-channel colour values (e.g., RGB)
 CdrwnCompositeClassifierImplements a multi-class classifier by combining binary classifiers
 CdrwnCompositeClassifierConfig
 CdrwnCompressionBufferUtility class for compressing data using the zlib library
 CdrwnConditionalGaussianUtility class for generating conditonal gaussian distribution
 CdrwnCondSuffStatsImplements a class for accumulating conditional first- and second-order sufficient statistics
 CdrwnConfigurableModuleInterface for a configurable module
 CdrwnConfigurationManagerConfiguration manager
 CdrwnConfusionMatrixUtility class for computing and printing confusion matrices
 CdrwnConfusionMatrixConfig
 CdrwnCrossValidatorUtility class for cross-validating classifier meta-parameters by brute-force testing of all combinations of some given settings
 CdrwnDatasetImplements a cacheable dataset containing feature vectors, labels and optional weights
 CdrwnDecisionTreeImplements a (binary-split) decision tree classifier of arbitrary depth
 CdrwnDecisionTreeConfig
 CdrwnDecisionTreeThread
 CdrwnDeformationCostStructure for holding dx, dy, dx^2 and dy^2 deformation costs
 CdrwnDirectoryProperty
 CdrwnDisjointSetsImplements a forest of disjoint sets abstract data type
 CdrwnDoubleProperty
 CdrwnDoubleRangeProperty
 CdrwnDualDecompositionInferenceImplements dual decomposition MAP inference (see Komodakis and Paragios, CVPR 2009 and works cited therein). Each factor is treated as a separate slave
 CdrwnEdmondsKarpMaxFlowImplementation of Edmonds-Karp maxflow/min-cut algorithm
 CdrwnFactorGeneric interface for a factor. Currently only inherited by drwnTableFactor
 CdrwnFactorAdditionOpAdd two or more factors together
 CdrwnFactorAtomicOpExecutes an atomic operation by executing a sequence of factor operations
 CdrwnFactorBinaryOpBase class for implementing binary factor operations
 CdrwnFactorCopyOpCopy one factor onto another
 CdrwnFactorDivideOpDivide one factor by another
 CdrwnFactorExpAndNormalizeOpExponentiate and normalize all the entries in a factor to sum to one
 CdrwnFactorGraphContainer and utility functions for factor graphs
 CdrwnFactorLogNormalizeOpShift all the entries in a factor so that the maximum is zero
 CdrwnFactorMarginalizeOpMarginalize out one or more variables in a factor
 CdrwnFactorMaximizeOpMaximize over one or more variables in a factor
 CdrwnFactorMinimizeOpMinimize over one or more variables in a factor
 CdrwnFactorMinusEqualsOpSubtract one (weighted) factor from another inline
 CdrwnFactorNAryOpBase class for implementing n-ary factor operations
 CdrwnFactorNormalizeOpNormalize all the entries in a factor to sum to one. Assumes non-negative entries
 CdrwnFactorOperationBase class for implementing various operations on table factors. The derived classes store mappings between factor entries making them very fast for iterative algorithms
 CdrwnFactorPlusEqualsOpAdd one (weighted) factor to another inline
 CdrwnFactorProductOpMultiply two or more factors together
 CdrwnFactorReduceOpReduce factor by oberving the value of one or more variables
 CdrwnFactorSubtractOpSubtract one factor from another
 CdrwnFactorTimesEqualsOpMultiply one factor by another inline
 CdrwnFactorUnaryOpBase class for implementing unary factor operations
 CdrwnFactorWeightedSumOpAdd a weighted combination of factors
 CdrwnFactoryTemplated factory for creating or cloning objects for a particular base class
 CdrwnFactoryAutoRegisterHelper class for registering classes with a drwnFactory
 CdrwnFactoryTraitsSome classes may provide default factory registration (e.g., built-in classes such as drwnClassifier and drwnFeatureTransform)
 CdrwnFactoryTraits< drwnClassifier >Implements factory for classes derived from drwnClassifier with automatic registration of built-in classes
 CdrwnFactoryTraits< drwnFeatureTransform >Implements factory for classes derived from drwnFeatureTransform with automatic registration of built-in classes
 CdrwnFeatureMapDefines the interface for a feature mapping $\phi : \mathbb{R}^n \rightarrow \mathbb{R}^m$
 CdrwnFeatureTransformImplements the interface for a generic feature transforms possibly with learned parameters, e.g., PCA (unsupervised) or LDA (supervised)
 CdrwnFeatureWhitenerWhitens (zero mean, unit variance) feature vector (see also drwnPCA)
 CdrwnFilenameProperty
 CdrwnFilterBankResponseHolds the results of running an image through a bank of filters and allows for computation of features over rectangular regions
 CdrwnFisherLDAFisher's linear discriminant analysis (LDA)
 CdrwnGaussianImplements a multi-variate gaussian distribution
 CdrwnGaussianConfig
 CdrwnGaussianMixtureImplements a multi-variant Gaussian mixture model
 CdrwnGaussianMixtureConfig
 CdrwnGaussianMixtureThread
 CdrwnGEMPLPInferenceImplements the generalized LP-based message passing algorithm of Globerson and Jaakkola, NIPS 2007
 CdrwnGrabCutConfig
 CdrwnGrabCutInstanceImplements the grabCut algorithm of Rother et al., SIGGRAPH 2004 for figure/ground segmentation
 CdrwnGrabCutInstanceGMM
 CdrwnGrabCutInstanceHistogram
 CdrwnHistogramImplements a simple templated histogram class
 CdrwnHOGFeaturesEncapsulates histogram-of-gradient (HOG) feature computation
 CdrwnHOGFeaturesConfig
 CdrwnHOGPartsModel
 CdrwnICMInferenceImplements iterated conditional modes (ICM) MAP inference. This method was first proposed in Besag, Royal Stats Society, 1986
 CdrwnIconFactory
 CdrwnIdentityFeatureMapCopies input feature space to output feature space
 CdrwnIdentityJointFeatureMapIncludes a copy of each feature from the input space for each class other than the last, i.e., $\phi(x, y) = \left(\delta\!\left\{y = 0\right\} x^T, \ldots, \delta\!\left\{y = K - 2\right\}x^T\right) \in \mathbb{R}^{(K - 1) n}$. This is the standard feature mapping for multi-class logistic models
 CdrwnImageCacheCaches images in memory up to a maximum number of images or memory limit
 CdrwnImageCacheConfig
 CdrwnImageInPainterPerforms exemplar-based image inpainting
 CdrwnImageInPainterConfig
 CdrwnImagePyramidCacheCaches image pyramids in main memory up to a maximum number of images or memory limit
 CdrwnImagePyramidCacheConfig
 CdrwnIndexQueueProvides a queue datastructure on a fixed number of indexes. At most one copy of each index can appear in the queue (a second enqueue is ignored). Membership of the queue can be queried
 CdrwnInferenceInterface for various (marginal) inference algorithms
 CdrwnIntegerProperty
 CdrwnJointFeatureMapDefines the interface for a joint feature mapping $\phi : \mathbb{R} \times \mathbb{Z} \rightarrow \mathbb{R}^m$
 CdrwnJunctionTreeInferenceImplements the junction tree algorithm for exact inference on a factor graph using drwnAsyncMaxProdInference for the actual message passing
 CdrwnKMeansImplements k-means clustering. Outputs the squared-distance to each of the cluster centroids. The nearest cluster can be found by passing the output to the drwn::argmin function. Supports weighted training examples
 CdrwnKMeansConfig
 CdrwnLBPFilterBankImplements filter bank for encoding local binary patterns
 CdrwnLinearRegressorBaseCommon functionality for drwnLinearRegressor
 CdrwnLinearRegressorConfig
 CdrwnLinearTransformImplements a linear feature transform with externally settable parameters
 CdrwnListProperty
 CdrwnLogBarrierQPSolver
 CdrwnLoggerMessage and error logging. This class is not thread-safe in the interest of not having to flush the log on every message
 CdrwnLoggerConfig
 CdrwnLPSolverSolves equality constrained linear programs with positivity constraints via the log-barrier method
 CdrwnMAPInferenceInterface for various MAP inference (energy minimization) algorithms
 CdrwnMAPInferenceConfig
 CdrwnMAPInferenceFactoryFactory for creating drwnMAPInference objects
 CdrwnMaskedPatchMatchImplements the basic PatchMatch algorithm of Barnes et al., SIGGRAPH 2009 on masked images
 CdrwnMaskedPatchMatchConfig
 CdrwnMatrixEditor
 CdrwnMatrixProperty
 CdrwnMaxFlowInterface for maxflow/min-cut algorithms (for minimizing submodular quadratic pseudo-Boolean functions)
 CdrwnMaxProdInferenceImplements max-product inference
 CdrwnMessagePassingInferenceImplements generic message-passing algorithms on factor graphs. See derived classes for specific algorithms
 CdrwnMessagePassingMAPInferenceImplements generic message-passing algorithms on factor graphs. See derived classes for specific algorithms
 CdrwnMouseStateMouse state and mouse callback for populating the mouse state. Used by the drwnWaitMouse function
 CdrwnMultiClassLogisticBaseCommon functionality for drwnMultiClassLogistic
 CdrwnMultiClassLogisticConfig
 CdrwnMultiSegConfigManages configuration settings for multiple image segmentation
 CdrwnMultiSegRegionDefinitionsProvides a mechanism for mapping region IDs to colours and class names. Can be initialized from an XML configuration file or programmatically for a number of standard datasets
 CdrwnNNGraphClass for maintaining a nearest neighbour graph over superpixel images. Search moves are implemented by templated functions in the drwnNNGraphMoves namespace
 CdrwnNNGraphAppendImageJob
 CdrwnNNGraphConfig
 CdrwnNNGraphDataMatrixThread
 CdrwnNNGraphDefaultMetricImplements the scoring functions needed by the search moves. Required member functions are isMatchable(), isFinite() and score()
 CdrwnNNGraphEdgeEncapsulates an outgoing edge in a drwnNNGraph
 CdrwnNNGraphImageHolds nodes (superpixels) for a single image
 CdrwnNNGraphImageDataHolds image, segments and other housekeeping information for an image
 CdrwnNNGraphLabelsEqualMetric
 CdrwnNNGraphLabelsEqualMetricNoUnknown
 CdrwnNNGraphLabelsNotEqualMetric
 CdrwnNNGraphLabelsNotEqualMetricNoUnknown
 CdrwnNNGraphLearnerLearn the distance metric base class with full set of constraints (i.e., loss function over all targets and imposters)
 CdrwnNNGraphLearnerConfig
 CdrwnNNGraphLLearnerLearn the distance metric M = LL^T as L^T
 CdrwnNNGraphLSparseLearner
 CdrwnNNGraphMLearner
 CdrwnNNGraphMoveUpdateThread
 CdrwnNNGraphNodeEncapsulates a superpixel node in a drwnNNGraph
 CdrwnNNGraphNodeAnnotationTemplated utility class for holding annotations for every node in a graph. See learning code for example use
 CdrwnNNGraphNodeIndex
 CdrwnNNGraphProjectFeaturesThread
 CdrwnNNGraphSortByImage
 CdrwnNNGraphSortByScore
 CdrwnNNGraphSparseLearnerLearn the distance metric base class with sparse set of constraints (i.e., loss function over further target and nearest imposter only)
 CdrwnNNGraphSparseSubGradientThread
 CdrwnNNGraphSubGradientThread
 CdrwnObjectEncapsulates a 2D object in an image for object detection
 CdrwnObjectListList of objects for the same image (see drwnObject)
 CdrwnObjectSequenceSequence of images, each with a list of objects (see drwnObjectList)
 CdrwnOpenCVUtilsConfig
 CdrwnOptimizerInterface for solving large-scale unconstrained optimization problems using L-BFGS
 CdrwnOptionsEditor
 CdrwnOrderedMapProvides a datastructure for that can be indexed by a KeyType (usually a string) or unsigned integer, i.e., the index
 CdrwnPartA part is defined as a template over a number of channels (possibly one), an offset from the object centroid, and a deformation cost. The part is scored as w^T F(x) where w are the template weights, and F(x) is the feature vector at location x in feature space. Note for edge templates this can be in pixels, but generally will be in some multiple of pixels. It is up to the inference model to handle conversion from feature space to pixel space
 CdrwnPartialAssignmentDefines an assignment to a subset of the variables
 CdrwnPartsAssignmentClass for holding as assignment to part locations and occlusion variables
 CdrwnPartsInferenceHelper class for running inference in a (constellation) parts-based model. Supports linear and quadratic distance transforms for deformation costs. Computes argmax_{x,c,z} m_i(x_i, z_i) + d_i(x_i, c) + p(c) where m_i(x, 0) = matchingCost_i(x) + priorCost_i(x) m_i(x, 1) = occlusionCost + priorCost_i(x) d_i(x, c) = [dx, dy]^T fabs(x - o - c) + [dx2, dy2]^T (x - o - c).^2
 CdrwnPartsModelInterface for implementing a part-based constellation model (i.e., pictorial structures model) for object detection
 CdrwnPartsModelConfig
 CdrwnPartsModelMixtureMixture of parts models (T must have a parts model interface). Inference returns the best scoring model and its parts locations
 CdrwnPatchMatchConfig
 CdrwnPatchMatchEdgeRepresents an edge in the drwnPatchMatchGraph
 CdrwnPatchMatchGraphEach image maintains a W-by-H-by-K array of match records referencing the (approximate) best K matches to other images. Image filename rather than the images themselves are stored. Duplicate filenames (images) are not allowed
 CdrwnPatchMatchGraphLearnerLearns a PatchMatchGraph by iteratively performing search moves over the space of matches
 CdrwnPatchMatchGraphRepaintClass for repainting an image from matches within the PatchMatchGraph
 CdrwnPatchMatchImagePyramidRecord of patch matches for mutliple levels each image
 CdrwnPatchMatchImageRecordRecords matches for one level in an image pyramid
 CdrwnPatchMatchNodeRepresents a node in the drwnPatchMatchGraph
 CdrwnPatchMatchThreadedInitialize
 CdrwnPatchMatchThreadedUpdate
 CdrwnPCAPrincipal component analysis feature transformation
 CdrwnPersistentBlockPersistent storage block used internally by drwnPersistentStorage
 CdrwnPersistentRecordInterface class for drwnPersistentStorage
 CdrwnPersistentStorageProvides indexed storage for multiple records using two files (a binary data file and a text index file)
 CdrwnPersistentStorageBufferProvides buffered storage (delayed write-back) of objects with a drwnPersistentRecord interface
 CdrwnPersistentVectorRecordTemplated class for storing vector records
 CdrwnPersistentVectorVectorRecordTemplated class for storing vector-of-vector records
 CdrwnPixelNeighbourContrastsConvenience class for holding pixel contrast weights
 CdrwnPixelSegCRFInferenceAlpha-expansion inference for a pixel-level CRF model with unary, contrast-dependent pairwise, and custom higher-order terms
 CdrwnPixelSegModelImplements a pixel-level CRF model for multi-class image segmentation (pixel labeling)
 CdrwnPRCurvePrecision-recall curve
 CdrwnProgressBar
 CdrwnPropertiesProvides an abstract interface for dynamic properties
 CdrwnPropertiesCopy
 CdrwnPropertyInterface
 CdrwnQPSolverQuadratic program solver
 CdrwnQuadraticFeatureMapAugments input feature vector with square of each feature (normalized so that if input is zero mean and unit variance so will output) as well as cross-terms and constant one (i.e., to allow for a bias weight)
 CdrwnQuadraticJointFeatureMapSame as drwnSquareJointFeatureMap but adds cross-terms
 CdrwnRandomForestImplements a Random forest ensemble of decision trees classifier. See L. Breiman, "Random Forests", Machine Learning, 2001
 CdrwnRandomForestConfig
 CdrwnRangeProperty
 CdrwnRegressionImplements the interface for a generic machine learning regression, e.g. see drwnLinearRegressor
 CdrwnRobustPottsCRFInferenceAnd where 0.0 < < 0.5
 CdrwnSegImageCompositePixelFeaturesClass for generating composite per-pixel feature vectors
 CdrwnSegImageFilePixelFeaturesPre-processed per-pixel features stored in files
 CdrwnSegImageInstanceEncapsulates a single instance of an image for multi-class pixel labeling problems (i.e., image segmentation)
 CdrwnSegImagePixelFeaturesInterface for generating per-pixel features for a drwnSegImageInstance object
 CdrwnSegImagePixelFeaturesConfig
 CdrwnSegImageRegionFeaturesInterface for generating per-region (or per-superpixel) features for a drwnSegImageInstance object. The superpixel data member of the drwnSegImageInstance object must be populated
 CdrwnSegImageRegionFeaturesConfig
 CdrwnSegImageStdPixelFeaturesStandard per-pixel filterbank features with option to read auxiliary features from a file
 CdrwnSegImageStdRegionFeaturesStandard per-region filterbank features computes mean and standard deviation of drwnTextonFilterBank responses over each region
 CdrwnSelectionProperty
 CdrwnSLICCentroid
 CdrwnSmartPointerImplements a shared pointer interface to avoid the need to deep copy constant (shared) objects
 CdrwnSmartPointerCmpLessThanComparison operator for objects held in a drwnSmartPointer
 CdrwnSontag08InferenceImplements the incremental tightening of the LP MAP inference algorithm from Sontag et al., UAI 2008
 CdrwnSparseFactorEncapsulates variables that the represented function is a function of. Allows user to add variables, look up variable cardinality and retrieve all variables. Implementation uses coordinate format (Bader and Kolda, SIAM Journal on Scientific Computing, 2007)
 CdrwnSparseLPSolverSolves linear programs with sparse equality constraints
 CdrwnSparseVecQuick-and-dirty sparse vector class as a plugin replacement for std::vector
 CdrwnSquareFeatureMapAugments input feature vector with square of each feature (normalized so that if input is zero mean and unit variance so will output) and 1 (i.e., to allow for a bias weight)
 CdrwnSquareJointFeatureMapSame as drwnIdentityJointFeatureMap but adds a square term for each feature i.e., $\phi(x, y) = \left(\delta\!\left\{y = 0\right\} (x^T, \frac{1}{\sqrt{2}} diag(xx^T - I), 1), \ldots, \delta\!\left\{y = K - 2\right\} (x^T, \frac{1}{\sqrt{2}} diag(xx^T - I), 1)\right) \in \mathbb{R}^{(K - 1)(2n + 1)}$
 CdrwnStatusBar
 CdrwnStdObjIfaceStandard Darwin object interface (cloneable and writeable)
 CdrwnStoragePropertyInterface
 CdrwnStringProperty
 CdrwnSuffStatsImplements a class for accumulating first- and second-order sufficient statistics (moments)
 CdrwnSumProdInferenceImplements sum-product inference
 CdrwnSuperpixelContainerHolds multiple oversegmentations for a given image
 CdrwnSupervisedTransformImplements interface for supervised feature transforms (i.e., with class labels)
 CdrwnTableFactorFactor which stores the value of each assignment explicitly in table form
 CdrwnTableFactorMappingCreates a mapping between entries in two tables
 CdrwnTableFactorStorageShared memory for table factors
 CdrwnTemplateMatcherUtility class for computing multiple template matches
 CdrwnTemplatePartsModel
 CdrwnTextEditor
 CdrwnTextonFilterBankImplements a 17-dimensional filter bank
 CdrwnTFeatureMapTransformHelper feature transformation based on a drwnFeatureMap
 CdrwnThreadJobInterface for a thread job functor
 CdrwnThreadPoolImplements a pool of threads for running concurrent jobs
 CdrwnThreadPoolConfig
 CdrwnTLinearRegressorImplements linear regression optimization templated on a drwnFeatureMap
 CdrwnTMultiClassLogisticImplements a multi-class logistic classifier templated on a drwnJointFeatureMap
 CdrwnTripletBasic datatype for holding three objects of arbitrary type. Similar to the STL pair<> class
 CdrwnTRWSInferenceImplements the sequential tree-reweighted message passing (TRW-S) algorithm described in "Convergent Tree-Reweighted Message Passing for Energy Minimization," Kolmogorov, IEEE PAMI, 2006
 CdrwnTRWSInferenceConfig
 CdrwnTypeableInterface for an object that returns its own type as a string
 CdrwnUnsupervisedTransformImplements interface for unsupervised feature transforms (i.e, without class labels)
 CdrwnVarUniverseData structure for definining the random variables (name and cardinality) for a given problem instance
 CdrwnVectorProperty
 CdrwnWeightedEdge
 CdrwnWeightedPixelEdgeWeighted undirected arc between pixels in an image
 CdrwnWeightedRobustPottsCRFInferenceAnd where 0.0 < < 0.5, W_c = w_i
 CdrwnWriteableInterface for objects that can serialize and de-serialize themselves
 CdrwnXMLUtilsConfig
 CGridSearchJob
 CInferenceThread
 ClabelTransferJob
 CloadDataJob
 CMainCanvas
 CMainWindow